Tsukushi Modulates Xnr2, FGF and BMP Signaling: Regulation of Xenopus Germ Layer Formation

نویسندگان

  • Samantha A. Morris
  • Alexandra D. Almeida
  • Hideaki Tanaka
  • Kunimasa Ohta
  • Shin-ichi Ohnuma
چکیده

BACKGROUND Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. METHODOLOGY/PRINCIPAL FINDINGS Here, we show that Xenopus Tsukushi (X-TSK), a member of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. CONCLUSIONS/SIGNIFICANCE Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional information by integration of multiple pathways in the extracellular space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity.

In Xenopus, ectodermal patterning depends on a mediolateral gradient of BMP signaling, higher in the epidermis and lower in the neuroectoderm. Neural crest cells are specified at the border between the neural plate and the epidermis, at intermediate levels of BMP signaling. We recently described a novel secreted protein, Tsukushi (TSK), which works as a BMP antagonist during chick gastrulation....

متن کامل

Xenopus Meis3 protein forms a hindbrain-inducing center by activating FGF/MAP kinase and PCP pathways.

Knockdown studies in Xenopus demonstrated that the XMeis3 gene is required for proper hindbrain formation. An explant assay was developed to distinguish between autonomous and inductive activities of XMeis3 protein. Animal cap explants caudalized by XMeis3 were recombined with explants neuralized by the BMP dominant-negative receptor protein. XMeis3-expressing cells induced convergent extension...

متن کامل

Xbra and Smad-1 response elements cooperate in PV.1 promoter to inhibit the early neurogenesis in Xenopus embryos Running title-Both BMP-4/Smad-1 and FGF/Xbra activates PV.1 expression

Crosstalk of signaling pathways plays crucial roles in cell fate determination, cell differentiation and proliferation. Both BMP-4/Smad-1 and FGF/Xbra signaling induce the expression of PV.1, leading to neural inhibition. However, BMP-4/Smad-1 and FGF/Xbra signaling crosstalk in the regulation of PV.1 transcription is still largely unknown. In this study, Smad-1 and Xbra physically interacted a...

متن کامل

Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors.

The maternal transcription factor VegT is important for establishing the primary germ layers in Xenopus. In previous work, we showed that the vegetal masses of embryos lacking maternal VegT do not produce mesoderm-inducing signals and that mesoderm formation in these embryos occurred ectopically, from the vegetal area rather than the equatorial zone of the blastula. Here we have increased the e...

متن کامل

Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps.

Spemann's organizer has potent neural inducing and mesoderm dorsalizing activities in the Xenopus gastrula. A third activity, the organizer's ability to induce a secondary gut, has been difficult to analyze experimentally due to the lack of early gene markers. Here we introduce endodermin, a pan-endodermal gene marker, and use it to demonstrate that chordin (Chd), a protein secreted by the orga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007